
The Linux Integrity Measurement Architecture and
TPM-Based Network Endpoint Assessment

Andreas Steffen
ITA Institute for Internet Technologies and Applications

HSR University of Applied Sciences Rapperswil
CH-8640 Rapperswil, Switzerland

Email: andreas.steffen@hsr.ch

Abstract—The strongSwan VPN software fully supports Net-
work Endpoint Assessment (NEA) and is able to collect evidence
from the Integrity Measurement Architecture (IMA) on a Linux
client and to transfer measurement data on more than 1000
system files via the Trusted Network Connect (TNC) protocols
PA-TNC, PB-TNC, and PT-EAP over IKEv2 EAP-TTLS to
a strongSwan TNC server. A quote signature by the Trusted
Platform Module (TPM) on the TNC client establishes the
trustworthiness of the IMA measurements. The overall decision
process of either giving a client full network access or to relegate
it to an isolation network takes less than 20 seconds.

I. INTRODUCTION

The last two years saw the emergence of several Trusted
Network Connect standards jointly developed and published
by the IETF NEA working group [34] and the Trusted
Computing Group (TCG) [35]. This raises the hope for a
convergence of the multitude of proprietary Network Access
Control (NAC) frameworks created by Cisco, HP, Juniper,
Microsoft and others to a single set of standards over the next
three to five years.

The strongSwan open source project [32] is one of the first
organizations which has implemented the new NEA protocols
and the first part of this paper is going to give a short overview
on how the three layers of the NEA reference model work and
how the TCG TNC specifications fit into it.

Next we will treat the concept of Platform Trust Services
(PTS) and how in that context Linux IMA can be used to
establish trust into a host platform. The recently published
TCG PTS protocol [17] comes in handy to transfer BIOS and
IMA measurements as standardized PTS PA-TNC attributes
to the TNC server. On the TNC server a reference database
specific to each particular Linux distribution is built using
the strongSwan attest tool which allows the comparison of
the actual IMA file measurements with values taken on a
reference system known to be clean and uncorrupted. For
client-specific BIOS measurements, the reference values are
taken during a preliminary learning phase and are stored in the
database linked to the fingerprint of the client TPM’s particular
Attestation Identity Key (AIK).

Finally we are going to discuss two issues that we encoun-
tered while implementing and testing our remote attestation so-
lution. One problem are multiple versions of dynamic libraries
that have differing IMA measurements values but the same
relative filename. The second challenge consists of transferring

100-200 kB of measurement data over a transport protocol that
does not support fragmentation.

II. NETWORK ACCESS CONTROL

In a typical Network Access Control setup as shown in
Fig. 1, a Policy Enforcement Point (PEP) which usually is
either an IEEE 802.1X-enabled layer 2 switch or WLAN
access point, or a layer 3 IPsec or layer 4 SSL VPN gateway,
controls the access to a campus network. A NAC client seeking
access to the protected network must undergo a series of health
measurements first. Depending on the measurement results
which are controlled and evaluated by a NAC Server and
assisted by a Policy Manager which together form a Policy De-
cision Point (PDP), the computer under test is either allowed
into the campus network, blocked from access or is isolated by
relegating it to a special ”Isolation” or ”Remediation” network
where the NAC client can update and patch its software or in
case of an infection by malware, can be sanitized and returned
to a healthy status.

When the first NAC solutions hit the market a couple of
years ago, each vendor introduced his own set of proprietary
NAC protocols which made interoperability next to impossi-
ble. But thanks to the Trusted Network Connect framework
defined by the TCG, a whole set of specifications [10]–[16]
has been made available, some of which have recently been
adopted as Internet Standards [2]–[5] by the IETF.

Computer with
NAC Client

NAC Policy
Enforcement Point

Remediation
 Server

Isolation
Network

NAC Server

Policy Manager

Corporate Network
allow

isolate

block

10.2.0.0/16

10.1.0.0/16

Fig. 1. Network Access Control (source: FHH)

Policy Decision
Point

Policy
Enforcement

Point

Access Requestor

Verifiers Verifiers

t

Collector
Collector

Integrity Measurement

Collectors (IMC)

Integrity Measurement
 Verifiers (IMV)

IF-M

IF-IMC IF-IMV

Network
Access

Requestor

Policy
Enforcement
Point (PEP)

Network
Access

Authority

IF-T

IF-PEP

TNC Server
(TNCS)

TNC Client
(TNCC)

IF-TNCCS

TSS

TPM

Platform Trust

Service (PTS)

IF-PTS

VPN Client
Supplicant

VPN Gateway
Switch/AP

AAA Server

Fig. 2. TCG TNC framework (source: TCG)

A. Trusted Network Connect (TNC)

The TCG TNC framework is shown in Fig. 2, omitting the
Meta Access Point (MAP) components and corresponding IF-
MAP [22] interfaces which are not relevant in the context of
this paper, although a strongSwan PEP can be equipped with
an IF-MAP client interface.

On the left-hand side we have a ”Network Access Re-
questor” which is usually either a layer 2 supplicant or
a layer 3 IPsec or layer 4 SSL VPN client, respectively.
Integrated into the Access Requestor is a TNC Client which
controls the local integrity measurements and communicates
via the IF-TNCCS 2.0 Client/Server protocol [13] with a
remote TNC Server. Attached to the TNC Client is at least one
”Integrity Measurement Collector” (IMC), a dynamic library
(*.so under Linux/Unix or *.dll under Windows) loaded during
runtime and which communicates with the TNC Client via the
IF-IMC interface [11] consisting of a C language API which
defines a set of functions callable either by the TNC Client or
the IMC.

On the right-hand side the TNC Server is often co-located
with an AAA Server which usually has an EAP-RADIUS
interface [6]. Since layer 2 supplicants don’t get an IP address
before the client authentication process hasn’t completed suc-
cessfully and thus can reach their switch or access point only
via layer 2 EAPOL (EAP-over-LAN) and similarly layer 3
IPsec clients can communicate with their VPN gateway only
via IKEv2 EAP [9] during the IPsec tunnel setup phase, a
half-duplex EAP-based IF-T transport protocol [14] is needed
which can forward messages from the TNC Client to the
TNC Server via the Policy Enforcement Point (PEP) and its
RADIUS IF-PEP [16] connection with the Policy Decision
Point (PDP). Because this IF-T protocol called EAP-TNC
is vulnerable to certain man-in-the-middle attacks it must
be protected by EAP-TTLS [7], EAP-FAST [8] or another
EAP tunnel protocol. For layer 4 SSL VPN access or after
layer 2 and layer 3 clients have gained access to the campus
network, a broadband full-duplex TLS-based IF-T protocol
[15] is preferred.

IETF NEA TCG TNC
Posture Collector Integrity Measurement Client
Posture Validator Integrity Measurement Verifier
Posture Broker Client TNC Client
Posture Broker Server TNC Server
PA-TNC IF-M 1.0
PB-TNC IF-TNCCS 2.0
PT-EAP IF-T for Tunneled EAP Methods 1.1
PT-TLS IF-T for TLS 2.0

TABLE I
Mapping between IETF NEA and TCG TNC Terminology and Protocols

Attached to the TNC Server is at least one ”Integrity Mea-
surement Verifier” (IMV), a dynamic library communicating
with the TNC Server via an IF-IMV interface [12] which in
its function set is nearly identical to its IF-IMC counterpart
on the client side. IMCs and IMVs exchange messages with
each other over the IF-M measurement protocol [10].

B. Network Endpoint Assessment (NEA)

In 2008 the IETF NEA working group defined a generic
reference model for Network Endpoint Access [1] which is
shown in Fig. 3.

1) Posture Attribute Protocol (PA): The NEA reference
model defines a ”Posture Attribute” protocol (PA) that carries
one or more attributes between ”Posture Collectors” and their
associated ”Posture Validator”. The PA protocol is a message-
oriented lightweight wrapper around a set of attributes being
exchanged.

PA-TNC [2] which is identical to TCG TNC IF-M 1.0 [10]
defines an instance of a PA protocol complying with the NEA
reference model. The PA-TNC message header just consists of
a version field and a message identifier. The actual information
is carried by any number of PA-TNC attributes which are
identified by their attribute type and the attribute vendor ID
which determines the namespace the attribute is defined in.

2) Posture Broker Protocol (PB): The NEA reference
model defines a ”Posture Broker” protocol (PB) that carries

NEA Server NEA Client

Posture
Broker
Client

Posture
Collectors
(1 .. N)

Posture
Collectors
(1 .. N)

Posture
Collectors
(1 .. N)

Posture
Broker
Server

Posture
Collectors
(1 .. N)

Posture
Collectors
(1 .. N)

Posture
Validators
(1 .. N)

Posture
Transport
Clients
(1 .. K)

Posture
Transport
Clients
(1 .. K)

Posture
Transport
Clients
(1 .. K)

Posture
Transport
Clients
(1 .. K)

Posture
Transport
Clients
(1 .. K)

Posture
Transport
Servers
(1 .. K)

PA

PB

PT

Fig. 3. IETF NEA reference model [1]

2

PB

CLOSE

Client
Working

Server
Working

Decided

End

Init

SDATA

SDATA CDATA

CDATA

CLOSE

CLOSE CLOSE

RESULT

SRETRY

CRETRY
receive CRETRY

 or SRETRY

receive
 CRETRY

Fig. 4. PB-TNC finite state machine [3], [13]

aggregate attribute messages between the Posture Collectors
on the NEA Client and the corresponding Posture Validators
on the NEA Server involved in a particular assessment. The PB
protocol provides a session allowing for message dialogs for
every assessment. The PB protocol may also carry the global
assessment decision in the Result Attribute from the ”Posture
Broker Server” to the ”Posture Broker Client”.

PB-TNC [3] which is identical to TCG TNC IF-TNCCS 2.0
[13] defines an instance of a PB protocol complying with the
NEA reference model. PB-TNC is a stateful session protocol
governed by the finite state machine depicted in Fig. 4. Starting
from an Init state the Posture Broker Client and Posture Broker
Server exchange CDATA and SDATA batches, respectively,
alternatively switching between the Server Working and the
Client Working states. If the Posture Broker Server arrives at
a final assessment it sends a RESULT batch, driving the state
machine into the Decided state. With an empty CLOSE batch
the PB-TNC session is terminated and goes to the final End
state.

Both client and server can terminate the session at any time
by sending an empty CLOSE batch or one containing a single
PB-Error message if a fatal error occurred. If either client or
server comes to the conclusion that an integrity measurement
should be repeated, they can send a CRETRY or SRETRY
batch, respectively, even if the session has already arrived at
the Decided state.

The PB-TNC protocol defines a number of PB-TNC mes-
sage types that can be transported in PB-TNC batches, the
most important being the PB-PA message which encapsulates
a PA-TNC message received from the higher PA layer.

3) Posture Transport Protocol (PT): The NEA reference
model defines a ”Posture Transport” protocol (PT) between
the NEA Client and the NEA Server responsible for carrying
the messages generated by the PB protocol. Depending on the
underlying network protocols there might be restrictions con-
cerning the maximum payload size, the number of roundtrips
or the inability of servers to initiate messages.

PT-EAP [4] which is largely based on EAP-TNC [14]
defines an instance of a PT protocol complying with the NEA

reference model. As with all EAP methods, the maximum mes-
sage size including the EAP header is 65’535 octets. Contrary
to EAP-TNC, a fragmentation mechanism isn’t foreseen in the
current PT-EAP Internet Draft, so that the higher PB layer has
to restrict the maximum batch size to 65’529 octets. This is
going to become an important issue with Linux IMA remote
attestation since a lot of bulk measurement data has to be
transferred. Due to security reasons PT-EAP must always be
encapsulated in an EAP tunnel method such as EAP-TTLS [7]
or EAP-FAST [8].

PT-TLS [5] which is identical to TCG TNC IF-T for
TLS 2.0 [15] defines another instance of a PT protocol. Based
on TCP and secured by Transport Layer Security (TLS), it is
a broadband protocol which allows to transport an unlimited
amount of data because the underlying TLS record protocol
takes care of any fragmentation issues.

III. PLATFORM TRUST SERVICES (PTS)

A. The Lying Endpoint Problem

Network endpoint assessment only works if we can trust
the measurements made by the Posture Broker Client. If the
remote host platform is subverted by dangerous malware such
as a root kit which hides itself well right in the operating
system or even in the BIOS then a compromised Posture
Collector or Broker Client will send the expected correct
measurement value e.g. of a system command in order to
soothe the Posture Validator but the actual command loaded
and executed on the host will be a modified one serving a
malicious purpose.

One way out of this lying endpoint problem is the instal-
lation of a trusted incorruptible entity on the host which acts
as a kind of local deputy on behalf of the remote validator
as shown in Fig. 5. A suitable tamper proof device is the
”Trusted Platform Module” (TPM) [18], a hardware chip
present on most PC platforms. The TPM can accumulate and
store measurement hashes in up to 24 incorruptible ”Platform
Configuration Registers” (PCRs) and can sign these measure-
ments with a protected RSA private key.

Since the TPM API is quite low-level, the Trusted Comput-
ing Group has defined a layered ”TCG Software Stack” (TSS)

?

Trusted Platform
 Module (TPM)

Untrusted
Host

Security
Gateway

Internet

Sanitized
Network

Fig. 5. Establishing trust by means of a TPM

3

PCR SHA-1 Measurement Hash Comment
0 4d894eef0ae7cb124740df4f6c5c35aa0fe7dae8 08 [S-CRTM Version]
0 f2c846e7f335f7b9e9dd0a44f48c48e1986750c7 01 [POST CODE]

...
7 9069ca78e7450a285173431b3e52c5c25299e473 04 []
4 c1e25c3f6b0dc78d57296aa2870ca6f782ccf80f 05 [Calling INT 19h]
4 67a0a98bc4d6321142895a4d938b342f6959c1a9 05 [Booting BCV Device 80h, - Hitachi HTS723216L9A360]
4 06d60b3a0dee9bb9beb2f0b04aff2e75bd1d2860 0d [IPL]
5 1b87003b6c7d90483713c90100cca3e62392b9bc 0e [IPL Partition Data]

TABLE II
/sys/kernel/security/tpm0/ascii bios measurements: SRTM BIOS measurements

PCR SHA-1 Template Hash SHA-1 File Data Hash Filename
10 d0bb59e83c371ba6f3adad491619524786124f9a ima 365a7adf8fa89608d381d9775ec2f29563c2d0b8 boot_aggregate
10 76188748450a5c456124c908c36bf9e398c08d11 ima f39e77957b909f3f81f891c478333160ef3ac2ca /bin/sleep
10 df27e645963911df0d5b43400ad71cc28f7f898e ima 78a85b50138c481679fe4100ef2b3a0e6e53ba50 ld-2.15.so

... ...
10 30fa7707af01a670fc353386fcc95440e011b08b ima 72ebd589aa9555910ff3764c27dbdda4296575fe parport.ko

... ...

TABLE III
/sys/kernel/security/ima/ascii runtime measurements: IMA runtime measurements

[19] which in itself is a 742 page document. A popular open
source implementation is TrouSerS [26] created and released
by IBM.

B. PTS Architecture

In order for runtime measurements to be collected, a process
within a Trusted Platform must be defined to do so. The TGC
”Integrity Measurement Model” (IMM) [20] has defined ”Plat-
form Trust Services” (PTS) as a standard IMM component
which provides all the necessary services which an ”Integrity
Measurement Collector” (IMC) can interface with to measure
components, parse Reference Manifests, and generate Integrity
Reports. As shown in the TCG TNC overview of Fig. 2, PTS
is the component responsible for interfacing with the TPM via
TSS and with the PTS-IMC via IF-PTS [21].

Reference Manifests, Integrity Reports and the IF-PTS
interface rely on an XML-based data representation. This
very flexible but also rather verbose approach of using XML
encoding has been chosen e.g. by the OpenPTS project [31].
Since the PA-TNC and PB-TNC standards are both based
on efficient TLV (Type-Length-Value) encoding schemes, we
wanted to adhere to this lean design concept and for our
strongSwan TNC implementation [33] decided to use only
the subset of PTS PA-TNC attributes defined by the ”PTS
Protocol Binding for IF-M” [17] that employ a TLV encoding
of PTS ”Attestation Evidence” data (for more details see sec-
tion III-D). As a consequence our strongSwan Attestation IMC
described in this paper does not use the IF-PTS interface at all
but collects integrity measurement data directly and accesses
the TPM via the TSS API. Thus in our implementation PTS
is rather an object of the Attestation IMC than an independent
entity.

C. Linux Integrity Measurement Architecture (IMA)

The Linux Integrity Measurement Architecture (IMA) [23],
[27] was introduced with the Linux 2.6.30 kernel in 2009. If
a TPM is present on a host’s motherboard then during boot

time, SRTM (Static Root of Trust for Measurement) BIOS
measurements are made and the SHA-1 measurement hash
values are stored in the binary bios measurements file located
in the /sys/kernel/ security/ tpm0/ directory. At the same time
these values are extended into specific PCRs of the TPM
thus securing the BIOS content against malicious change. A
shortened example of a human-readable ASCII version of the
SRTM BIOS measurement list which, depending on the BIOS
version, typically has between 20 to 130 entries is shown in
Table II.

If IMA is enabled in the kernel then a /sys/kernel/ security/
ima/ directory is created and runtime measurements are made
that are stored as a list in the binary runtime measurements
file. A typical example of the the ASCII version is shown
in Table III. The first measurement list entry is the
boot aggregate which consists of a SHA-1 hash of the con-
tents of the PCRs 0. . . 7. This means with IMA on, it is
sufficient to check the boot aggregate value in order to quickly
verify whether the BIOS measurements still have the original
values.

Table III lists two IMA measurement values for each entry.
The right-hand value is the SHA-1 hash of the file data itself
and the left-hand value is the so called ”Template Hash” which

PROC_SUPER_MAGIC
dont_measure fsmagic=0x9fa0
SYSFS_MAGIC
dont_measure fsmagic=0x62656572
DEBUGFS_MAGIC
dont_measure fsmagic=0x64626720
TMPFS_MAGIC
dont_measure fsmagic=0x01021994
SECURITYFS_MAGIC
dont_measure fsmagic=0x73636673
measure func=BPRM_CHECK
measure func=FILE_MMAP mask=MAY_EXEC
SE Linux
measure func=PATH_CHECK mask=MAY_READ \

obj_type=modules_object_t

Fig. 6. /etc/sysconfig/ima-policy: Custom IMA Measurement Policy

4

is the SHA-1 hash of the 20 octet file data hash concatenated
with a fixed text buffer of 256 octets containing the filename
truncated to 255 characters and padded up to the buffer length
with NUL characters. This template hash gets extended into
PCR 10 dedicated to IMA measurements.

Using a dracut [28] initramfs it is possible to replace the
default IMA measurement policy by a custom one defined
in the /etc/ sysconfig/ ima-policy configuration file as listed in
Fig. 6.

Besides executable files and loaded dynamic libraries, also
dynamically loaded kernel modules are measured which re-
quires a file system labeled by SELinux [29], though. Under
an Ubuntu 12.04 LTS i686 OS this results in about 1200 IMA
measurements among them about 700 dynamic libraries and
60 kernel modules up to the moment when the strongSwan
TNC client is started right after the Ubuntu login.

D. PTS Protocol

TNC@FHH [30] was one of the first TNC applications
to implement TPM-based remote attestation. Their attestation
IMC/IMV pair is using a proprietary encoding to embed
”Attestation Identity Key” (AIK) certificates, measurement
requests and PCR contents into XML-encoded TCG TNC IF-
TNCCS 1.1 batches.

OpenPTS [31] uses PA-TNC attributes transported over a
raw ssh connection with attribute types somehow similar to
those of the TCG PTS protocol but defined in the OpenPTS
namespace.

strongSwan [32] currently seems to be the first and only

PTS IF-M Attribute Name Sender
Request PTS Protocol Capabilities IMV
PTS Protocol Capabilities IMC
D-H Nonce Parameters Request IMV
D-H Nonce Parameters Response IMC
D-H Nonce Finish IMV
PTS Measurement Algorithm Request IMC
PTS Measurement Algorithm Selection IMV
Get TPM Version Information IMV
TPM Version Information IMC
Get Attestation Identity Key IMV
Attestation Identity Key IMC
Request Functional Component Evidence IMV
Generate Attestation Evidence IMV
Simple Component Evidence IMC
Simple Evidence Final IMC
Request File Metadata IMV
Unix-Style File Metadata IMC
Request File Measurement IMV
File Measurement IMC

TABLE IV
TLV/Unix subset of PTS IF-M Attribute Types [17]

open source software which uses PTS PA-TNC attributes from
the TCG namespace defined by the ”PTS Protocol Binding
to TNC IF-M” [17] officially released in August 2011. As
already mentioned in section III-B, only the subset of attributes
listed in Table IV which are needed to efficiently transfer
TLV-based attestation evidence as well as Linux/Unix-style
file measurements are currently supported.

IV. THE STRONGSWAN TNC SOLUTION

The strongSwan open source VPN project [32] was founded
in 2004 as one of the successors of the then discontinued
FreeS/WAN IPsec project. In the meantime the whole code
base has been rewritten from scratch, although still in the C
programming language but with a modern, modular, object-
oriented and fully multi-threaded archictecture. Currently
strongSwan is the most complete open source implementation
of the IKEv2 [9] Internet Key Exchange protocol and support
for the deprecated but still widely used IKEv1 protocol has
been added recently.

In 2010 the author became aware of the emerging IETF
and TCG TNC standards and decided to add support for the
following protocols to the strongSwan software:
• PA-TNC [2]
• PB-TNC [3]
• PT-EAP [4]
• IF-IMC [11]
• IF-IMV [12]
• IF-PEP [16]
• PTS [17]

The strongSwan distribution now includes Test, [port] Scanner,
and Attestation IMC/IMV pairs that can be used with any third
party TNC client/server equipped with an IF-IMC or IF-IMV
interface, respectively.

Since currently no other TNC product besides strongSwan is
known to support the PB-TNC standard, we have no alternative
but to test the PB and underlying PT layer with the TNC
client/server pair integrated into the IKEv2-based strongSwan
VPN client and server, respectively.

A. Internet Key Exchange (IKEv2)

In remote access VPN scenarios usually a password-based
EAP method such as EAP-MD5 or EAP-MSCHAPv2 is used
for client authentication and the user credentials are managed
and verified by an AAA Server as shown in Fig. 7.

If TNC support is added then an end-to-end EAP-TTLS
tunnel is created between the VPN/TNC client and the AAA
server, the EAP-TTLS packets being transported between the
IPsec client and IPsec gateway over IKEv2-EAP and between
the VPN gateway and AAA server via EAP-RADIUS. By
loading the tnc-pdp plugin strongSwan can act as a standalone
Policy Decision Point (PDP) which combines a TNC server
with a simple AAA server possessing a RADIUS interface.
strongSwan can also be configured as a combined Policy
Enforcement Point (PEP) and PDP where the VPN gateway
and the TNC server are co-located. This is the setup we are
going to work with in the following paragraphs.

5

The ipsec.conf files of a typical strongSwan VPN/TNC
client and matching VPN/TNC server configuration are shown
in Fig. 8 and Fig. 9, respectively. The VPN network topology
is equivalent to the NAC scenario shown in Fig. 1 with an
allow and an isolate subnet.

With a hierarchical structure the strongswan.conf file in
Fig. 10 defines options for the combined IKEv2/TNC client
in the charon section and the attestation IMC in the libimcv
section. Each charon plugin and IMC or IMV can have
configuration parameters of its own. The corresponding file
for the server side listed in Fig. 11 contains definitions for the
combined IKEv2/TNC charon daemon, the attestation IMV

Responder Initiator UDP/500

Client

IDi IDr
AAA

Server

KEi Ni KEr Nr

Authr

VPN GW

RADIUS

IDr Certr

TNC
Server

TNC
Client

 AAA
Cert

GW
Cert

IKEv2 with EAP

 EAP-TTLS

PT-EAP (EAP-TNC)

Fig. 7. PT-EAP transport via IKEv2 EAP-TTLS

config setup
charondebug="tnc 2, imc 3, pts 3"

conn home
left=%any
leftid=carol@strongswan.org
leftauth=eap
right=192.168.0.1
rightsubnet=10.1.0.0/16
rightid=moon.strongswan.org
rightauth=any
auto=start

Fig. 8. ipsec.conf : configuration of strongSwan VPN client

config setup
charondebug="tnc 2, imv 3, pts 3"

conn rw-allow
rightgroups=allow
leftsubnet=10.1.0.0/16
also=rw-eap
auto=add

conn rw-isolate
rightgroups=isolate
leftsubnet=10.2.0.0/16
also=rw-eap
auto=add

conn rw-eap
left=192.168.0.1
leftcert=moonCert.pem
leftid=moon.strongswan.org
leftauth=eap-ttls
rightauth=eap-ttls
right=%any

Fig. 9. ipsec.conf : configuration strongSwan VPN server

charon {
plugins {
eap-ttls {
max_message_count = 0
fragment_size = 1024

}
eap-tnc {
protocol = tnccs-2.0
max_message_count = 20

}
tnccs-20 {
max_batch_size = 32754
max_message_size = 32722

}
tnc-imc {
preferred_language = en, pl, de

}
}

}

libimcv {
plugins {
imc-attestation {
pcr_info = no
use_quote2 = yes
aik_cert = /home/carol/privacyca/AIK_Cert.der
aik_blob = /home/carol/privacyca/AIK_Blob.bin

}
}

}

Fig. 10. strongswan.conf : options for VPN/TNC client & IMC

charon {
plugins {
eap-ttls {
phase2_method = md5
phase2_piggyback = yes
phase2_tnc = yes
max_message_count = 0
fragment_size = 1024

}
eap-tnc {
protocol = tnccs-2.0
max_message_count = 20

}
}

}

libimcv {
plugins {
imv-attestation {
database = sqlite:///etc/pts/config.db
cadir = /etc/pts/cacerts
hash_algorithm = sha1

}
}

}

attest {
database = sqlite:///etc/pts/config.db

}

Fig. 11. strongswan.conf : options for VPN/TNC server & IMV

and the attest command line tool useful for managing the
attestation database.

According to the IF-IMC [11] and IF-IMV [12] standards,
the library paths of the IMCs and IMVs to be loaded must be
defined in the file /etc/tnc config with entries of the form
IMC Scanner /usr/lib/ipsec/imcvs/imc_scanner.so
IMC Attestation /usr/lib/ipsec/imcvs/imc_attestation.so

on the client side and with corresponding entries
IMV Scanner /usr/lib/ipsec/imcvs/imv_scanner.so
IMV Attestation /usr/lib/ipsec/imcvs/imv_attestation.so

6

on the server side, respectively. These integrity measurement
libraries are dynamically loaded and initialized during the
startup of the TNC charon daemon.

B. PTS Attestation Database

The strongSwan distribution comes with an SQLite database
schema to be found in the file src/ libpts/plugins/ imv
attestation/ tables.sql which defines all tables needed to store
attestation reference measurement data. Additionally some
example file measurement data for various Linux distributions
is included in the data.sql file located in the same directory.

The PTS attestation database is created on the TNC server
with the following command:
cat tables.sql data.sql | sqlite3 /etc/pts/config.db

Alternatively strongSwan offers a plugin for MySQL and in
principle any relational database could be attached by writing
a corresponding SQL driver plugin.

The attest command line tool can be used to manage the
database. E.g. the query shown in Fig. 12 returns all Linux
distributions for which some demo data is available.

The strongSwan Attestation IMC retrieves the Linux dis-
tribution version the client is running on either from /etc/lsb-
release if this file exists or by applying some heuristics. It also
determines the hardware architecture using the uname system
call. A string is formed from this gathered platform infor-
mation and sent via a standard IETF ”Product Information”
PA-TNC attribute to the Attestation IMV. The IMV can then
retrieve reference measurement information using this product
string. The command line query shown in Fig 13 can be used
to check which file measurements are available for a given
software product.

In order to verify the IMA measurements in the format
depicted in Table III, the SHA-1 template hashes of typically
about 10’000 files per Linux distribution version must be

ipsec attest --products
3: CentOS release 5.6 (Final) x86_64
6: Gentoo Base System release 1.12.11.1 i686
5: Ubuntu 10.10 i686
4: Ubuntu 10.10 x86_64
1: Ubuntu 11.04 i686
2: Ubuntu 11.04 x86_64
7: Ubuntu 11.10 i686
8: Ubuntu 12.04 LTS i686

8 products found

Fig. 12. attest query returns all registered Linux distributions

ipsec attest --hashes --sha1 --product ’Ubuntu 10.10 x86_64’
3: /lib/libdl.so.2

43:50:f0:82:51:1c:74:2c:c0:50:50:d1:8a:23:d1:da:9f:b0:93:40
6: /lib/libxtables.so.2

92:e6:6a:e2:82:94:7f:66:54:46:82:03:9a:33:fd:1d:bd:40:22:44
4: /sbin/iptables

86:c4:46:32:93:85:98:74:24:3d:83:74:f7:f3:ef:60:f4:4f:93:09
9: /lib/xtables/libxt_tcp.so

d2:bf:35:56:a0:b3:8c:fb:a2:96:2d:05:8f:a8:ea:77:73:97:e8:2d
8: /lib/xtables/libxt_udp.so

20:0e:ab:67:37:7b:f3:d5:a2:53:72:83:8c:38:84:16:58:a7:18:e4
5 SHA1 values found for product ’Ubuntu 10.10 x86_64’

Fig. 13. attest query returns all file hashes for a given product

stored in the attestation database. This process can be fully
automated by running a build-database shell script which
currently uses about 200 attest calls, a small excerpt of
which is shown in Fig. 15. Together with the normal SHA-
1 file data hash for each entry which is computed with the
--sha1-ima option as well and which equals the output
of the sha1sum command and thus facilitates the debugging
of version problems, the SQLite database attains a size of
about 2 MB. Executable files must be stored with absolute
path names whereas dynamic libraries and kernel modules are
stored with both the directory path and the basename by adding
the --rel option.

With IMA we primarily want to verify the integrity of
system files. Unfortunately some application programs like
firefox or thunderbird bundle their own versions of system
libraries, e.g. libfreebl3.so or libsoftokn3.so. Thus in order to
avoid matching errors we have to store these measurement
values, too, because the lookup happens on the basename of
the dynamic libraries. By the way, in the case of firefox or
thunderbird it is worthwile to keep tabs on the integrity of
these important applications as well.

The reference database must be built on a Linux system
known to be clean. Since most Linux distributions issue
security patches and bug fixes every other day, the reference
database must be updated accordingly. Currently the attestation
database is generated from scratch every time an update is
published so that clients which haven’t applied the latest
patches will be strictly relegated to the remediation network
in order to update their system files. In the future the hashes
of older versions might be kept in the database if using these
deprecated files does not pose any immediate threat.

C. PTS Functional Component Evidence

The TCG PTS protocol [17] organizes the gathering of PTS
evidence around a hierarchically structured sequence of so-
called Functional Component measurements. Some standard
functional components have already been defined in the TCG
namespace but unfortunately they can not be easily applied to
the kind of measurements that are done by the Linux Integrity
Subsystem. Therefore we created three functional components
of our own defined in the ITA-HSR namespace as shown in
Fig. 14. In the context of this paper we restrict ourselves to
the functionality of the ITA-HSR ”Linux-IMA” component
which can be further subdivided by using a Qualifier. We
have defined a ”Trusted Platform” qualifier value designating
the SRTM BIOS measurements and an ”Operating System”
qualifier for the IMA runtime measurements.

SRTM BIOS measurements are rather specific to the client

ipsec attest --components
1: ITA-HSR/Trusted GRUB Boot Loader [K.] Trusted Platform
2: ITA-HSR/Trusted Boot [K.] Trusted Platform
3: ITA-HSR/Linux IMA [K.] Trusted Platform
4: ITA-HSR/Linux IMA K.] Operating System

4 components found

Fig. 14. attest query returns all registered functional components

7

#!/bin/sh
executable files with absolute filenames
ipsec attest --add --product "Ubuntu 12.04 LTS i686" --sha1-ima --dir /sbin
ipsec attest --add --product "Ubuntu 12.04 LTS i686" --sha1-ima --dir /usr/sbin
ipsec attest --add --product "Ubuntu 12.04 LTS i686" --sha1-ima --dir /bin
ipsec attest --add --product "Ubuntu 12.04 LTS i686" --sha1-ima --dir /usr/bin

...
dynamic libraries with relative filenames
ipsec attest --add --product "Ubuntu 12.04 LTS i686" --sha1-ima --rel --dir /lib
ipsec attest --add --product "Ubuntu 12.04 LTS i686" --sha1-ima --rel --dir /usr/lib
ipsec attest --add --product "Ubuntu 12.04 LTS i686" --sha1-ima --rel --dir /lib/i386-linux-gnu

...
applications using different versions of Linux system libraries
for file in /usr/lib/firefox/*.so
do
ipsec attest --add --product "Ubuntu 12.04 LTS i686" --sha1-ima --rel --file $file
done

...
kernel modules with relative filenames
for file in ‘find /lib/modules/3.2.21ima/kernel -name *.ko‘
do
ipsec attest --add --product "Ubuntu 12.04 LTS i686" --sha1-ima --rel --file $file
done

Fig. 15. Creating the IMA Measurement Reference Database

platform so that reference values have to be stored in the attes-
tation database under a unique platform identifier. We decided
to use for this purpose the fingerprint of an AIK certificate
bound to the TPM’s endorsement key. The AIK certificate
must be registered in the database by the system administrator
with the command shown in Fig. 16 before the automatic
reference measurement enrollment process can started. This
prevents a user or a root kit from changing the platform
configuration and then requesting a fresh AIK certificate from
the Privacy CA so that the modified measurements could be
registered anew. As a matter of fact, since TNC clients are
not supposed to be anonymous, it would easier if the system
administrator set up and manage an AIK CA so that any
AIK certificate issued to a TPM and associated user could
be registered automatically.

ipsec attest --add --owner carol --aik AIK_Cert.der
key ’b772a6730776b9f028e5adfccd40b55c320a13b6’ inserted

Fig. 16. attest registering an AIK public key in the attestion database

Lines 01. . . 08 of Fig. 17 show that the TNC client carol
receives a TCG ”Functional Component Evidence” PA-TNC
attribute from the TNC server moon which specifies that
first the ITA-HSR ”Linux IMA - Trusted Platform” func-
tional component is to be measured, followed by the ITA-
HSR ”Linux IMA - Operation System” component. A TCG
”Generate Attestation Evidence” PA-TNC attribute starts the
actual evidence gathering. A sensible approach would be
to collect the SRTM BIOS evidence (126 measurements on
our test system) the first time a client is measured but to
omit this functional component as long as the boot aggregate
measurement returns the correct hash value over PCRs 0. . . 7.

Lines 09. . . 12 show that the first SRTM BIOS measure-
ment listed in Table II is received by the TNC server moon
embedded in a TCG ”Simple Component Evidence” PA-TNC
attribute.

Lines 13. . . 17 show that the last of the 126 SRTM BIOS

measurements is transferred in a TCG ”Simple Component
Evidence” PA-TNC attribute for the functional component
ITA-HSR ”Linux IMA - Trusted Platform”.

Lines 18. . . 23 show that the first IMA runtime measurement
listed in Table III which is the boot aggregate value is
transferred in a TCG ”Simple Component Evidence” PA-TNC
attribute as well.

Lines 24. . . 38 show the IMA runtime measurement transfers
of an executable file, a dynamic library and a kernel module,
respectively, the first attribute including an absolute file name
and the latter two basenames only.

Lines 39. . . 47 show the synthetic construction of the PCR
Composite hash and the TPM Quote Info structure using
software-based shadow PCR registers 0..7 and 10 continuously
extended by the Attestation IMV with the measurements
received from the Attestation IMC. When the TCG ”Simple
Evidence Final” PA-TNC attribute arrives containing the TPM
Quote signature, the signature can be verified with the help of
the synthesized TPM Quote Info structure. If the signature is
valid then full trust in all functional component evidence is
established.

Line 60 shows that from a total of 1247 IMA measurements
(excluding boot aggregate) 1177 matched with Ubuntu 12.04
LTS reference values stored in the attestation database and 70
non-system filenames have not been found in the reference
database and thus are ignored.

D. PA-TNC and PB-TNC Bulk Data Flow Control

As mentioned in section II-B3, the largest PB-TNC batch
that fits into a PT-EAP payload can have a size of 65’529
octets. This is an inefficient choice though since before TLS
protection is applied, a TLS Application Data record is frag-
mented into TLS Plaintext records of 16’384 octets maximum
size by the TLS record layer, so that with the 8 octet AVP
header added by the EAP-TTLS encapsulation, a trailing runt
fragment of just 7 octets results. Therefore we recommend
an optimum PB-TNC batch size of 65’522 octets which fits

8

01 carol charon: 16[TNC] processing PA-TNC message with ID 0x184fd6d0
21 carol charon: 16[TNC] processing PA-TNC attribute type ’TCG/Request Functional Component Evidence’ 0x005597/0x00100000
03 carol charon: 16[TNC] processing PA-TNC attribute type ’TCG/Generate Attestation Evidence’ 0x005597/0x00200000
04 carol charon: 16[IMC] evidence requested for 2 functional components
05 carol charon: 16[PTS] * ITA-HSR functional component ’Linux IMA’ [K.] ’Trusted Platform’
06 carol charon: 16[PTS] loaded bios measurements ’/sys/kernel/security/tpm0/binary_bios_measurements’ (126 entries)
07 carol charon: 16[PTS] * ITA-HSR functional component ’Linux IMA’ [K.] ’Operating System’
08 carol charon: 16[PTS] loaded ima measurements ’/sys/kernel/security/ima/binary_runtime_measurements’ (1248 entries)

09 moon charon: 09[TNC] processing PA-TNC attribute type ’TCG/Simple Component Evidence’ 0x005597/0x00300000
10 moon charon: 09[PTS] ITA-HSR functional component ’Linux IMA’ [K.] ’Trusted Platform’
11 moon charon: 09[PTS] measurement time: Jul 30 19:28:11 2012
12 moon charon: 09[PTS] PCR 0 extended with: 4d:89:4e:ef:0a:e7:cb:12:47:40:df:4f:6c:5c:35:aa:0f:e7:da:e8

...
13 moon charon: 09[TNC] processing PA-TNC attribute type ’TCG/Simple Component Evidence’ 0x005597/0x00300000
14 moon charon: 09[PTS] ITA-HSR functional component ’Linux IMA’ [K.] ’Trusted Platform’
15 moon charon: 09[PTS] measurement time: Jul 30 19:28:11 2012
16 moon charon: 09[PTS] PCR 5 extended with: 1b:87:00:3b:6c:7d:90:48:37:13:c9:01:00:cc:a3:e6:23:92:b9:bc
17 moon charon: 09[PTS] checking 126 ITA-HSR ’Linux IMA’ BIOS evidence measurements

18 moon charon: 09[TNC] processing PA-TNC attribute type ’TCG/Simple Component Evidence’ 0x005597/0x00300000
19 moon charon: 09[PTS] ITA-HSR functional component ’Linux IMA’ [K.] ’Operating System’
20 moon charon: 09[PTS] measurement time: Jul 30 19:28:13 2012
21 moon charon: 09[PTS] PCR 10 extended with: d0:bb:59:e8:3c:37:1b:a6:f3:ad:ad:49:16:19:52:47:86:12:4f:9a
22 moon charon: 09[PTS] ’boot_aggregate’
23 moon charon: 09[PTS] checking ITA-HSR ’Linux IMA’ boot aggregate evidence measurement

24 moon charon: 09[TNC] processing PA-TNC attribute type ’TCG/Simple Component Evidence’ 0x005597/0x00300000
25 moon charon: 09[PTS] ITA-HSR functional component ’Linux IMA’ [K.] ’Operating System’
26 moon charon: 09[PTS] measurement time: Jul 30 19:28:13 2012
27 moon charon: 09[PTS] PCR 10 extended with: 76:18:87:48:45:0a:5c:45:61:24:c9:08:c3:6b:f9:e3:98:c0:8d:11
28 moon charon: 09[PTS] ’/bin/sleep’
29 moon charon: 09[TNC] processing PA-TNC attribute type ’TCG/Simple Component Evidence’ 0x005597/0x00300000
30 moon charon: 09[PTS] ITA-HSR functional component ’Linux IMA’ [K.] ’Operating System’
31 moon charon: 09[PTS] measurement time: Jul 30 19:28:13 2012
32 moon charon: 09[PTS] PCR 10 extended with: df:27:e6:45:96:39:11:df:0d:5b:43:40:0a:d7:1c:c2:8f:7f:89:8e
33 moon charon: 09[PTS] ’ld-2.15.so’

...
34 moon charon: 09[TNC] processing PA-TNC attribute type ’TCG/Simple Component Evidence’ 0x005597/0x00300000
35 moon charon: 09[PTS] ITA-HSR functional component ’Linux IMA’ [K.] ’Operating System’
36 moon charon: 09[PTS] measurement time: Jul 30 19:28:13 2012
37 moon charon: 09[PTS] PCR 10 extended with: 30:fa:77:07:af:01:a6:70:fc:35:33:86:fc:c9:54:40:e0:11:b0:8b
38 moon charon: 09[PTS] ’parport.ko’

...
39 moon charon: 04[TNC] processing PA-TNC attribute type ’TCG/Simple Evidence Final’ 0x005597/0x00400000
40 moon charon: 04[PTS] constructed PCR Composite hash: df:07:94:6e:04:72:ee:fe:4d:b0:c3:6e:92:1b:83:dc:e6:49:28:df
41 moon charon: 04[PTS] constructed TPM Quote Info: => 52 bytes @ 0x8287e2c
42 moon charon: 04[PTS] 0: 00 36 51 55 54 32 B2 CC 00 38 9D 23 E7 3B 43 D2 .6QUT2...8.#.;C.
43 moon charon: 04[PTS] 16: 91 88 CE D1 A1 0E 48 F2 B5 54 00 03 FF 04 00 01H..T......
44 moon charon: 04[PTS] 32: DF 07 94 6E 04 72 EE FE 4D B0 C3 6E 92 1B 83 DC ...n.r..M..n....
45 moon charon: 04[PTS] 48: E6 49 28 DF .I(.
46 moon charon: 04[IMV] received PCR Composite matches constructed one
47 moon charon: 04[IMV] TPM Quote Info signature verification successful

48 moon charon: 04[PTS] processed 1247 ITA-HSR ’Linux IMA’ file evidence measurements: 1177 ok, 70 unknown, 0 differ, 0 failed

Fig. 17. Verification of Simple Component Evidence attributes via database lookups and TPM Quote2 signature

into exactly four TLS Plaintext records of maximum size.
If we deduct the PB-TNC batch header (8 octets), the PB-
TNC message header (12 octets) and PB-BA message header
(12 octets) then the maximum PA-TNC message that can be
transported in a single batch has a size of 65’490 octets.

The max batch size and max message size parameters of
the tnccs-20 plugin can be used to configure the maximum
PB-TNC batch and PA-TNC message sizes as shown in
Fig. 10, the default values being 65’522 and 65’490 octets,
respectively. With the latest version 1.3 of the IF-IMC interface
[11], an IMC can query the maximum PA-TNC message size
that is going to be accepted by the TNC client it is attached
to via a GetAttribute function call.

One argument which speaks against using very large PB-
TNC batches is the 4 second default retransmission time of the

UDP-based IKEv2 protocol as implemented by strongSwan.
About 700 TCG ”Simple Component Evidence” PA-TNC at-
tributes fit into the largest possible PA-TNC message. Looking
up 700 file measurement values in the attestation database
takes longer that 4 seconds so that the IKEv2 client retransmits
the last IKE AUTH request which in turn has to be handled
by the IKEv2 server already busy processing the Component
Evidence data. Performance tests have shown that 32’754 and
32’722 octets for the PB-TNC batch and PA-TNC message
size, respectively, which fit into two maximum TLS Plaintext
payloads, are optimum in the sense that no retransmits are
triggered because the processing time for each PA-TNC mes-
sage just stays below the 4 second limit. The resulting log
with increased debugging levels is shown in Fig. 18.

Lines 01. . . 17 of Fig. 18 show that a total of 1374 TCG

9

01 carol charon: 16[TNC] creating PA-TNC message with ID 0xf3bc541f
02 carol charon: 16[TNC] creating PA-TNC attribute type ’TCG/Simple Component Evidence’ 0x005597/0x00300000
03 charon: last message repeated 380 times
04 carol charon: 16[TNC] creating PB-PA message type ’TCG/PTS’ 0x005597/0x00000001

05 carol charon: 16[TNC] creating PA-TNC message with ID 0xa22d16f2
06 carol charon: 16[TNC] creating PA-TNC attribute type ’TCG/Simple Component Evidence’ 0x005597/0x00300000
07 charon: last message repeated 346 times
08 carol charon: 16[TNC] creating PB-PA message type ’TCG/PTS’ 0x005597/0x00000001

09 carol charon: 16[TNC] creating PA-TNC message with ID 0x0600eabb
10 carol charon: 16[TNC] creating PA-TNC attribute type ’TCG/Simple Component Evidence’ 0x005597/0x00300000
11 charon: last message repeated 337 times
12 carol charon: 16[TNC] creating PB-PA message type ’TCG/PTS’ 0x005597/0x00000001

13 carol charon: 16[TNC] creating PA-TNC message with ID 0x512bd6ea
14 carol charon: 16[TNC] creating PA-TNC attribute type ’TCG/Simple Component Evidence’ 0x005597/0x00300000
15 charon: last message repeated 307 times
16 carol charon: 16[TNC] creating PA-TNC attribute type ’TCG/Simple Evidence Final’ 0x005597/0x00400000
17 carol charon: 16[TNC] creating PB-PA message type ’TCG/PTS’ 0x005597/0x00000001

18 carol charon: 16[TNC] PB-TNC state transition from ’Client Working’ to ’Server Working’
19 carol charon: 16[TNC] creating PB-TNC CDATA batch
20 carol charon: 16[TNC] adding PB-PA message
21 carol charon: 16[TNC] sending PB-TNC CDATA batch (32678 bytes) for Connection ID 1
22 carol charon: 16[TNC] queued 3 PB-TNC messages for next CDATA batch

23 carol charon: 16[IKE] sending tunneled EAP-TTLS AVP [EAP/RES/TNC]
24 carol charon: 16[ENC] generating IKE_AUTH request 16 [EAP/RES/TTLS]
25 carol charon: 16[NET] sending packet: from 192.168.0.254[4500] to 192.168.0.1[4500]

...
26 carol charon: 03[NET] received packet: from 192.168.0.1[4500] to 192.168.0.254[4500]
27 carol charon: 03[ENC] parsed IKE_AUTH response 47 [EAP/REQ/TTLS]
28 carol charon: 03[ENC] generating IKE_AUTH request 48 [EAP/RES/TTLS]
29 carol charon: 03[NET] sending packet: from 192.168.0.254[4500] to 192.168.0.1[4500]

30 moon charon: 09[TNC] no recommendation available yet, sending empty PB-TNC SDATA batch
31 moon charon: 09[TNC] PB-TNC state transition from ’Server Working’ to ’Client Working’
32 moon charon: 09[TNC] creating PB-TNC SDATA batch
33 moon charon: 09[TNC] sending PB-TNC SDATA batch (8 bytes) for Connection ID 1
34 moon charon: 09[IKE] sending tunneled EAP-TTLS AVP [EAP/REQ/TNC]
35 moon charon: 09[ENC] generating IKE_AUTH response 48 [EAP/REQ/TTLS]
36 moon charon: 09[NET] sending packet: from 192.168.0.1[4500] to 192.168.0.254[4500]

37 carol charon: 02[NET] received packet: from 192.168.0.1[4500] to 192.168.0.254[4500]
38 carol charon: 02[ENC] parsed IKE_AUTH response 48 [EAP/REQ/TTLS]
39 carol charon: 02[IKE] received tunneled EAP-TTLS AVP [EAP/REQ/TNC]
40 carol charon: 02[TNC] received TNCCS batch (8 bytes) for Connection ID 1
41 carol charon: 02[TNC] PB-TNC state transition from ’Server Working’ to ’Client Working’
42 carol charon: 02[TNC] processing PB-TNC SDATA batch
43 carol charon: 02[TNC] PB-TNC state transition from ’Client Working’ to ’Server Working’
44 carol charon: 02[TNC] creating PB-TNC CDATA batch
45 carol charon: 02[TNC] adding PB-PA message
46 carol charon: 02[TNC] sending PB-TNC CDATA batch (32695 bytes) for Connection ID 1
47 carol charon: 02[TNC] queued 2 PB-TNC messages for next CDATA batch
48 carol charon: 02[IKE] sending tunneled EAP-TTLS AVP [EAP/RES/TNC]
49 carol charon: 02[ENC] generating IKE_AUTH request 49 [EAP/RES/TTLS]
50 carol charon: 02[NET] sending packet: from 192.168.0.254[4500] to 192.168.0.1[4500]

...
51 moon charon: 04[TNC] IMV 1 provides recommendation ’allow’ and evaluation ’compliant’
52 moon charon: 04[TNC] PB-TNC state transition from ’Server Working’ to ’Decided’
53 moon charon: 04[TNC] creating PB-TNC RESULT batch
54 moon charon: 04[TNC] adding PB-Assessment-Result message
55 moon charon: 04[TNC] adding PB-Access-Recommendation message
56 moon charon: 04[TNC] sending PB-TNC RESULT batch (40 bytes) for Connection ID 1
57 moon charon: 04[IKE] sending tunneled EAP-TTLS AVP [EAP/REQ/TNC]
58 moon charon: 04[ENC] generating IKE_AUTH response 143 [EAP/REQ/TTLS]
59 moon charon: 04[NET] sending packet: from 192.168.0.1[4500] to 192.168.0.254[4500]

Fig. 18. Bulk data flow control on PA-TNC and PB-TNC layers, fragmentation by EAP-TTLS

”Simple Component Evidence” attributes and one TCG ”Sim-
ple Evidence Final” PA-TNC attribute are distributed by the
Attestion IMC over four PA-TNC messages the sizes of which
will never exceed 32’722 octets.

Lines 18. . . 22 show that a PB-TNC batch with a size of
32’678 bytes carrying the first PA-TNC message encapsulated
in a PB-PA message is formed by the TNC client carol and

sent to the TNC server moon whereas the three remaining
PB-PA messages are queued for later transmission.

Lines 23. . . 25 show that the 32k EAP-TTLS AVP payload is
fragmented by the EAP-TTLS protocol into small fragments
of 1024 octets each so that they certainly fit into the UDP
datagrams the IKE AUTH messages are transported in.

Lines 26. . . 29 show that 32 additional IKE AUTH ex-

10

changes are needed to transfer all EAP-TTLS fragments.
Lines 30. . . 36 show the situation on the TNC server moon

which does not have any PB-TNC messages to send and
therefore checks if all IMVs have already provided their
recommendation via the IF-IMV [12] interface so that the
TNC server could form its final recommendation based on
its policy. The PA-TNC finite state machine in Fig. 4 could
then advance to the Decided state by sending a RESULT
batch. This is not the case because the Attestation IMV is
still withholding its recommendation since it hasn’t received
the TCG ”Simple Evidence Final” PA-TNC attribute from the
Attestation IMC yet. If no final recommendation is possible
then the TNC server sends an empty SDATA batch which
according to the state machine will allow the TNC client to
send the next CDATA batch. In order to prevent endless loops
the TNC server will only send an empty SDATA batch if
the last received CDATA batch was non-empty. Otherwise a
recommendation will be solicited from all pending IMVs and
a state change to Decided will be enforced.

Lines 37. . . 50 show that the TNC client upon reception of
the empty SDATA batch sends the second PB-TNC batch. The
dispatch of the two remaining queued PB-PA messages via
two additional SDATA/CDATA batch exchanges is omitted in
Fig. 18

Lines 51. . . 59 show the recommendation provided by the
Attestation IMV after reception of the TCG ”Simple Evidence
Final” attribute, allowing the verification of the complete func-
tional component evidence measurements via the TPM quote
signature. The TNC server then shifts into the Decided state by
sending a RESULT batch containing a PB-Assessment-Result
and a PB-Access-Recommendation message.

V. CONCLUSION

We have shown that remote attestation based on TPM-
certified Linux IMA measurements can be done very ef-
ficiently thanks to the new TLV-based PTS, PA-TNC and
PB-TNC standard protocols. The problem that the PT-EAP
protocol does not support fragmentation was solved by setting
the maximum size of both the PB-TNC batches and PA-TNC
messages and by optimally allocating the PA-TNC attributes
to be transferred to consecutive PA-TNC messages each of
which is embedded into a PB-TNC batch of its own.

ACKNOWLEDGMENT

The author would like to thank Sansar Choinyambuu for
implementing the PB-TNC [24] and TCG PTS [25] protocols
in the C programming languange and integrating them into
the strongSwan open source software as part of her HSR
master program. I’m also grateful to Gloria Serrao for making
me aware of the TCG PTS protocol [17] in the first place
as an emerging standard for transporting PTS evidence over
an IF-M communication channel and for Carolin Latze and
Paul Sangster for shedding light on some particular questions
concerning the practical use of PTS functional components.

REFERENCES

[1] P. Sangster, H. Khosravi, M. Mani, K. Narayan, and J. Tardo, Network
Endpoint Assessment (NEA): Overview and Requirements), RFC 5209,
June 2008. [Online]. Available: http://tools.ietf.org/html/rfc5209

[2] P. Sangster and K. Narayan, PA-TNC: A Posture Attribute (PA) Protocol
Compatible with Trusted Network Connect (TNC), RFC 5792, March
2010. [Online]. Available :http://tools.ietf.org/html/rfc5792

[3] R. Sahita, S. Hanna, R. Hurst, and K. Narayan, PB-TNC: A Posture Broker
(PB) Protocol Compatible with Trusted Network Connect (TNC), RFC
5793, March 2010. [Online]. Available: http://tools.ietf.org/html/rfc5793

[4] N. Cam-Winget and P. Sangster, PT-EAP: Posture Transport (PT) Pro-
tocol For EAP Tunnel Methods, I-D draft-ietf-nea-pt-eap-03, July 2012.
[Online]. Available: http://tools.ietf.org/html/draft-ietf-nea-pt-eap

[5] P. Sangster, N. Cam-Winget, and J. Salowey, PT-TLS: A TCP-based
Posture Transport (PT) Protocol, I-D draft-ietf-nea-pt-tls-07, Aug. 2012.
[Online]. Available: http://tools.ietf.org/html/draft-ietf-nea-pt-tls

[6] B. Aboba and P. Calhoun, RADIUS Support for Extensible Authentication
Protocol (EAP), RFC 3579, Sep. 2003. [Online]. Available: http://tools.
ietf.org/html/rfc3579

[7] P. Funk and S. Blake-Wilson, EAP Tunneled TLS Authenticated Protocol
Version 0 (EAP-TTLSv0), RFC 5281, Aug. 2008. [Online]. Available:
http://tools.ietf.org/html/rfc5281

[8] N. Cam-Winget, D. McGrew, J. Salowey, and H. Zhou, The Flexible
Authentication via Secure Tunneling EAP Method (EAP-FAST), RFC
4851, May 2007. [Online]. Available: http://tools.ietf.org/html/rfc4851

[9] C. Kaufmann, P. Hoffman, Y. Nir, and P. Eronen, Internet Key Exchange
Protocol Version 2 (IKEv2), RFC 5996, Sep. 2010. [Online]. Available:
http://tools.ietf.org/html/rfc5996

[10] P. Sangster et. al., TCG TNC IF-M: TLV Binding, TCG Specification
Version 1.0, Rev. 37 , March 10, 2010. [Online]. Available: http://www.
trustedcomputinggroup.org/resources/tnc ifm tlv binding specification

[11] D. Arroyo, S. Hanna, H. Rathor, and P. Sangster, TCG TNC IF-IMC,
TCG Specification Version 1.3, Rev. 16 , July 10, 2012. (to be published)

[12] D. Arroyo, S. Hanna, H. Rathor, and P. Sangster, TCG TNC IF-IMV,
TCG Specification Version 1.3, Rev. 11 , July 10, 2012. (to be published)

[13] R. Sahita, S. Hanna, R. Hurst, et. al., TCG TNC IF-TNCCS: TLV
Binding, TCG Specification Version 2.0, Rev. 16 , Jan. 22, 2010. [Online].
Available: http://www.trustedcomputinggroup.org/resources/tnc iftnccs
specification

[14] P. Sangster, et. al., TCG TNC IF-T: Protocol Bindings for Tunneled EAP
Methods, TCG Specification Version 1.1, Rev. 10, May 21, 2007. [On-
line]. Available: http://www.trustedcomputinggroup.org/resources/tnc ift
protocol bindings for tunneled eap methods specification

[15] P. Sangster, et al., TCG TNC IF-T: Binding to TLS, TCG Specification
Version 2.0, Rev. 4, July 10, 2012. (to be published)

[16] M. Sanchez et al., TCG TNC IF-PEP: Protocol Bindings for RA-
DIUS, TCG Specification Version 1.1, Rev. 0.7, Feb. 5, 2007. [On-
line]. Available: http://www.trustedcomputinggroup.org/resources/tnc
ifpep protocol bindings for radius specification

[17] P. Sangster et. al., TCG Attestation PTS Protocol: Binding to TNC
IF-M, TCG Specification Version 1.0, Rev. 28 , Aug. 24, 2011. [On-
line]. Available: http://www.trustedcomputinggroup.org/resources/tcg
attestation pts protocol binding to tnc ifm

[18] TPM Main Specification Level 2, TCG Specification 1.2, Rev. 116,
Mar. 1, 2011. [Online]. Available: http://www.trustedcomputinggroup.org/
resources/tpm main specification

[19] TCG Software Stack (TSS), TCG Specification 1.2, Jan. 6, 2006. [On-
line]. Available: http://www.trustedcomputinggroup.org/resources/tcg
software stack tss specification

[20] Integrity Management Architecture, TCG Specification 1.0, Rev. 1.0,
Nov. 17, 2006 [Online]. Available: http://www.trustedcomputinggroup.
org/resources/infrastructure work group architecture part ii integrity
management version 10

[21] Platform Trust Services Interface, TCG Specification 1.0, Rev. 1.0, Nov.
17, 2006 http://www.trustedcomputinggroup.org/resources/infrastructure
work group platform trust services interface specification ifpts
version 10

[22] S. Bailey, R. Chickering, L. Lorenzin, S. Venema, D. Vigier, et al.,
TNC IF-MAP Binding for SOAP, TCG Specification Version 2.1, Rev.
15, May 7, 2012. [Online]. Available: http://www.trustedcomputinggroup.
org/resources/tnc ifmap binding for soap specification

11

[23] D. Safford, M. Zohar, and R. Sailer, Using IMA for Integrity Measure-
ment and Attestation, Linux Plumbers Conf. 2009. [Online]. Available:
http://linuxplumbersconf.org/2009/slides/David-Stafford-IMA LPC.pdf

[24] S. Choinyambuu, A Posture Broker Protocol Compatible with Trusted
Network Connect, HSR Master Project, Jan. 2011. [Online]. Avail-
able: http://security.hsr.ch/mse/projects/2011 TNC Compatible Posture
Broker Protocol.pdf

[25] S. Choinyambuu, TCG Attestation: PTS Protocol Binding to TNC IF-M,
HSR Master Thesis, Feb. 2012. [Online]. Available: http://security.hsr.ch/
mse/theses/2012 tcg attestation pts protocol.pdf

[26] TrouSerS download site [Online]. Available: http://sourceforge.net/
projects/trousers/

[27] Linux Integrity Measurement Architecture wiki. [Online]. Available:
http://sourceforge.net/apps/mediawiki/linux-ima/

[28] Dracut project wiki [Online]. Available: http://dracut.wiki.kernel.org/
[29] SELinux project wiki. [Online]. Available: http://selinuxproject.org/
[30] TNC@FHH project homepage. [Online]. Available: http://trust.inform.

fh-hannover.de/joomla/index.php/projects/tncfhh
[31] Open Platform Trust Services (OpenPTS) project homepage. [Online].

Available: http://sourceforge.jp/projects/openpts/wiki/
[32] strongSwan project homepage. [Online]. Available: http://www.

strongswan.org/
[33] strongSwan Trusted Network Connect wiki. [Online]. Available: http:

//www.strongswan.org/tnc/
[34] IETF Network Endpoint Assessment Working Group homepage. [On-

line]. Available: http://datatracker.ietf.org/wg/nea/
[35] Trusted Computing Group homepage. [Online]. Available: http://www.

trustedcomputinggroup.org/

12

